Efectos del cambio climático en los ecosistemas y las energías renovables

Autores/as

  • Edgar Edurman García Silvera Instituto Tecnológico Superior Libertad
  • Amauris Pérez Arias Instituto Tecnológico Superior Libertad
  • Mario Eduardo Echeverría Buchelli Instituto Tecnológico Superior Libertad

Palabras clave:

Cambio climático, energía solar, ecología, contaminación atmosférica

Resumen

El objetivo del trabajo fue determinar cómo afectan las variaciones del clima mundial en los diferentes tipos de ecosistemas, la ecología y el uso de las energías renovables, con énfasis en la energía solar, para lo cual se empleó la metodología de análisis bibliográfico documental a través de fuentes secundarias, obteniendo como resultado la identificación de indicadores que evidencian impactos negativos en los dos primeros aspectos, además de realizar una descripción sintetizada del estado del arte relacionado con la energía solar, donde se toman en consideración los pronósticos de su uso en la zona europea hasta el año 2077. Como conclusión se reconocen los efectos dañinos del cambio climático sobre los ecosistemas, la ecología y las fuentes renovables de energía, de manera específica en la energía solar, con una previsión negativa sobre su expansión en un futuro cercano.

Palabras claves: Cambio climático, energía solar, ecología, contaminación atmosférica

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Tameemi MA, Chukin, VV. (2016). Global water cycle and solar activity variations. J Atmos Sol Terr Phys. 142, 55–9. https://doi.org/10.1016/j.jastp.2016.02.023

Atlas global Solar (2019) Mundo. Irradiación normal directa. https://globalsolaratlas.info/downloads/world. Fecha de consulta 23 de septiembre de 2020.

Barton, A., Hales, B., Waldbusser, GG, Langdon, C. y Feely, RA (2012). La ostra del Pacífico, Crassostrea gigas, muestra una correlación negativa con los niveles naturalmente elevados de dióxido de carbono: implicaciones para los efectos de acidificación del océano a corto plazo. Limnología y oceanografía. 57 (3), 698-710 https://doi.org/10.4319/lo.2012.57.3.0698

Bazhenov, O. (2019). Increased humidity in the stratosphere as a possible factor of ozone destruction in the Arctic during the spring 2011 using Aura MLS observations. Journal of Remote Sensing, 40(9), 3448-3460.

https://doi.org/10.1080/01431161.2018.1547449

Byrne, M., Hernández, JC. (2020). Sea urchins in a high CO2 world: Impacts of climate warming and ocean acidification across life history stages. Developments in Aquaculture and Fisheries Science 43, 281-297. https://doi.org/10.1016/B978-0-12-819570-3.00016-0

Castillo, CP., Silva, FB., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 88,86–99. https://doi.org/10.1016/j.enpol.2015.10.004

Cepsa, D. (2015). El Cambio Climático y los Gases de Efecto Invernadero (GEI) Cepsa. https://bit.ly/3ezCF5D Fecha de consulta: 20 de agosto de 2020

Cumbajín, M., Ramírez, L., Gordón, C. (2019). Integración de energías renovables en sistemas de energía eléctrica convencionales basados en confiabilidad computacional. Rev. Univ. Risti. Pp 391-402- http://www.risti.xyz/issues/ristie19.pdf

Craven, D., Isbell, F., Manning, P., Connolly, J., Bruelheide, H., Ebeling, A., ... & Eisenhauer, N. (2016). Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1694), 20150277. https://doi.org/10.1098/rstb.2015.0277

Czernecki, B., Mi?tus, M. (2017). The thermal seasons variability in Poland, 1951–2010. Theor Appl Climatol. 127,481–493.

https://doi.org/10.1007/s00704-015-1647-z

Fabricius, K., Langdon, C., Uthicke, S. Humphrey, C. (2011). Perdedores y ganadores en arrecifes de coral aclimatados a concentraciones elevadas de dióxido de carbono. Nature Clim Change 1, 165-169 https://doi.org/10.1038/nclimate1122

Fant, C., Schlosser, A., & Strzepek, K. (2016). The impact of climate change on wind and solar resources in southern Africa. Applied Energy, 161, 556-564. https://doi.org/10.1016/j.apenergy.2015.03.042

Gielen, D., Boshella, F., Sayginb, D., Bazilianc, MD., Wagnera, N., & Gorinia, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews. 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006

Grise, KM., Davis, SM., Staten, PW., Adam, O. (2018). Regional and Seasonal Characteristics of the Recent Expansion of the Tropics. J. Climate ,31 (17),6839–685 https://doi.org/10.1175/JCLI-D-18-0060.1

Gul, C., Kang, Sc., Ghauri, B. et al. Uso de imágenes Landsat para monitorear cambios en el área cubierta de nieve de glaciares seleccionados en el norte de Pakistán. J. Mt. Sci. 14, 2013-2027 (2017). https://doi.org/10.1007/s11629-016-4097-x

Hosenuzzaman, M. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew Sustain Energy Rev.41, 284–97. https://doi.org/10.1016/j.rser.2014.08.046

IEA. (2019). Emisiones de dióxido de carbono relacionadas con la energía por estado, 2005-2016. Administración de Información Energética de los EE.UU.

https://www.eia.gov/environment/emissions/state/analysis/. Fecha de consulta: 28 de agosto de 2020

IRENA. (International Renewable Energy Agency) Global Energy Transformation 2019. Pp.18. file:///C:/Users/Personal/Downloads/IRENA_Global_Energy_Transformation_2019.pdf . Fecha de consulta: 30 de agosto de 2020

International Renewable Energy Agency. Estimating the Renewable Energy Potential in Africa A GIS-based approach; (2014). ?http://www.irena.org/ DocumentDownloads/Publications/IRENA_Africa_Resource_Potential_Aug2014. Fecha de consulta: 30 de agosto de 2020

Kabira, E., Kumarb, P., Kumarc, S., Adelodund, AA., & Kime, KH. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094

Kheir, AM., Baroudy, A., Aiad, MA., Zoghdan, M., El-Aziz, MA., Ali MG.,& Fullen, MA. (2019). Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Science of The Total Environment, 651(2), 3161-3173.

https://doi.org/10.1016/j.scitotenv.2018.10.209.

Kling, MM, Ackerly, DD Patrones de viento globales y la vulnerabilidad de las especies dispersas por el viento al cambio climático. Nat. Clim. Chang. 10, 868–875 (2020). https://doi.org/10.1038/s41558-020-0848-3

Koutroulis, AG., Papadimitriou, LV., Grillakis, MG., Tsanis, IK., Warren, R., & Betts, RA. (2019). Global water availability under high-end climate change: A vulnerability based assessment. Global and Planetary Change, 175, 52-63. https://doi.org/10.1016/j.gloplacha.2019.01.013

Lewis, M., McNaughton, J., Márquez-Dominguez, C., Todeschini, G., Togneri, M., Master, I ., Allmark, M., Stallard, T., Neill, S., Goward-Brown, A., & Robins, P. (2019). Power variability of tidal-stream energy and implications for electricity supply. Energy. 183, 1061-1074. https://doi.org/10.1016/j.energy.2019.06.181

Macgregor, DS. (2020). Regional variations in geothermal gradient and heat flow across the African plate. Journal of African Earth Sciences. 171, 103950.

https://doi.org/10.1016/j.jafrearsci.2020.103950

Mahaffey, C., Palmer, M., Greenwood, N. & Sharples, J. (2020). Impacts of climate change on dissolved oxygen concentration relevant to the coastal and marine environment around the UK. MCCIP Science Review 31–53. https://doi.org/10.14465/2020.arc02.oxy

Martinho, F. 2016. Energía Eólica: Estudios y Reflexiones Sobre la Viabilidad del Potencial de esta Energía en Brasil. Rev. Nucleo do Conhecimento. 1 año. Vol. 10 págs. 25-38 https://www.nucleodoconhecimento.com.br/ingenieria-de-produccion/energia-eolica-estudios. Fecha de consulta: 25 de julio de 2020.

Markings, S. (2018). The Effect of Temperature on the Rate of Photosynthesis. Sciencing. https://sciencing.com/effect-temperature-rate-photosynthesis-19595.html. Fecha de consulta: 15 de junio de 2020

Molina, J., & Ortiz, IM. (2012). Implantación de energias renovables y estimación de la huella de carbono en el municipio de Blanca (Murcia). Papeles de Geografía, (55-56), 121-135. https://revistas.um.es/geografia/article/view/176251 Fecha de consulta: 10 de mayo de 2021.

Mundo-Hernández, J., Alonso, B., Hernández-Álvarez, J. & Celis-Carrillo, B. (2014) An overview of solar photovoltaic energy in Mexico and Germany, Renewable and Sustainable Energy Reviews, Volume 31, Pages 639-649, https://doi.org/10.1016/j.rser.2013.12.029

Parra, DL., Botero-Londoño, MA., & Botero-Londoño, JM. (2019). Biomasa residual pecuaria: revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos. Revista UIS Ingenierías, 18(1), 149-160. https://doi.org/10.18273/revuin.v18n1-2019013

Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev.15(3),1513– 24. https://doi.org/10.1016/j.rser.2010.11.037

Pfahl, S., O’Gorman, PA., & Fischer, EM. (2017). Understanding the regional pattern of projected future changes in extreme precipitation. Nature climate change. 7, 423–427.

https://doi.org/10.1038/nclimate3287

Pfenninger, SS. (2017). The increasing impact of weather on electricity supply and demand. Iain Energy, 145(15), 65-78. https://doi.org/10.1016/j.energy.2017.12.051

Quinaluisa Morán, C. O., Peralta Fonseca, K. V., Solano Apuntes, A. P., Gallo Sevillano, A. G., Villalva Bravo, Ángel J., & Zambrano Gavilanes, F. E. (2019). Energía hídrica en el Ecuador. Ciencia Digital, 3(2.6), 219-237. https://doi.org/10.33262/cienciadigital.v3i2.6.560

REN21. (Renewable Energy Policy Network for the 21st Century) (2019). Fuentes de energía renovables en el mundo. www.ren21.net/gsr-2019/chapters. Fecha de consulta: 16 de febrero de 2020

Sabonnadière, JC. (2009). Renewable energies. Editorial Wiley-ISTE; 1er edición https://doi.org/10.1002/9780470612002

Smirnov, O., Zhang, M., Xiao, T. (2016). The relative importance of climate change and population growth for exposure to future extreme droughts. Climatic Change 138, 41–53

https://doi.org/10.1007/s10584-016-1716-z.

Tarroja, B, Agha-Kouchak, A., & Samuelsena, S. (2016). Quantifying Climate Change Impacts on Hydropower Generation and Implications on Electric Grid Greenhouse Gas Emissions and Operation. Energy 111, 295-305. https://doi.org/10.1016/j.energy.2016.05.131

Vasconcelos-Sampaio, PG., & Aguirre-Gonzáles, MO . (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590-601. https://doi.org/10.1016/j.rser.2017.02.081

Wang J., Song, C., Reager, J.T.,, Yao, F., Famiglietti, J., Sheng, Y., MacDonald, GM., Brun, F., Müller-Schmied, H., Marston, RA & Wada, Y. (2018). Recent global decline in endorheic basin water storages. Nature geoscience. Nature Geoscience, 11, 926–932. https://doi.org/10.1038/s41561-018-0265-7

Wegner, N., Mercante, E., Souza-Mendes, I., Ganascini, D., Metri-Correa M., Furlan-Maggi M., Vilas-Boas MA., Costa-Wrublack S., & Cruz-Siqueira JA. (2020). Hydro energy potential considering environmental variables and water availability in Paraná Hydrographic Basin. Journal of Hydrology, 580,124183. https://doi.org/10.1016/j.jhydrol.2019.124183

WET, (World Energy Trade) (2020). La producción de energía oceánica del mundo llego a los 45 GWh en la última década.

https://www.worldenergytrade.com/energias-alternativas/agua-y-vapor/la-produccion-de-energia-oceanica-del-mundo-llego-a-los-45-gwh-en-la-ultima-decada. Fecha de consulta: 25 de agosto de 2020.

Whitmee, S., Haines, A., Beyrer, C., Boltz, F., Capon, A.G. (2015). Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–The Lancet Commission on planetary health. The Lancet 386(10007), 1973–2028.

https://doi.org/10.1016/S0140-6736(15)60901-1.

Yeh, P., Wu, C. (2018). Recent Acceleration of the Terrestrial Hydrologic Cycle in the U.S. Journal of Geophysical Research: Atmospheres, 123(6), 2993-3008. https://doi.org/10.1002/2017JD027706

Ziska, LH. (2016). The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy. Agriculture, Ecosystems and Environment 231, 304–309. https://doi.org/10.1016/j.agee.2016.07.014

Descargas

Publicado

2021-06-07

Cómo citar

García Silvera, E. E. ., Pérez Arias, A., & Echeverría Buchelli, M. E. (2021). Efectos del cambio climático en los ecosistemas y las energías renovables. Revista Qualitas , 21(21), 025 - 043. Recuperado a partir de https://revistas.unibe.edu.ec/index.php/qualitas/article/view/91

Número

Sección

GERENCIA, NEGOCIOS Y DESARROLLO SUSTENTABLE